Definition:

A circle is the set of points (x, y) that are equidistant from a fixed point, called the center of the circle. The distance between the center of the circle and any point on the circle is the radius.

What is the equation of a circle?
Standard Form:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

General Form:

$$
x^{2}+y^{2}+D x+E y+F=0
$$

Example 1:
Graph the circle that has the equation $(x-1)^{2}+(y+4)^{2}=16$.
Step 1:
$\square(x-h)^{2}+(y-k)^{2}=r^{2}$
Identify h and k .
$\mathrm{h}=1 \quad \mathrm{k}=$ \qquad The center of the circle is (1, -4).

Step 2: Identify the radius.
$r^{2}=$ \qquad
$r=$

Step 3: Graph the circle.
Erase to reveal the answers.

Example 2:
Graph the circle that has the equation $(x+2)^{2}+y^{2}=25$.

[^0]

Example 3:
What is the equation in of the circle that has a center at $(-2,4)$ and a diameter of 10 ? $(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
(x-(-2))^{2}+(y-(4))^{2}=5^{2}
$$

What does the graph look like?

Example 4:
What is the equation of the circle that has a radius of 3 and a center at $(0,-2)$?

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-(0))^{2}+(y-(-2))^{2}=3^{2} \\
& x^{2}+(y+2)^{2}=9
\end{aligned}
$$

Example 5:

Convert $x^{2}+y^{2}+6 x-10 y-2=0$ to standard form.

Step 1:
Move the constant to the right side of the equation. Group the x-terms. Group the y-terms.

4 $x^{2}+6 x+y^{2}-10 y=2$

Step 2:
Complete the
square in x
Add to both
sides.

Complete the square in y. Add to both sides.

Step 3:
Write in factored form.

Example 6:

Convert $x^{2}+y^{2}-8 x+2 y+8=0$ to standard form.

Step 1:

Move the constant to the right side of the equation. Group the x-terms. Group the y-terms.

$$
\sqrt{2} \quad x^{2}-8 x+y^{2}+2 y=-8
$$

Step 2:

Complete the
square in x .
Add to both
sides.

Complete the square in y. Add to both sides.

Step 3:
Write in factored form.

$$
\sqrt[3]{(x-4)^{2}}+(\underline{y+1})^{2}=9
$$

[^0]: Erase to reveal answers.

